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On the density of states of sparse random matrices 
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Leningrad Nuclear Physics Institute, 188350 Gatchina, Leningrad District, USSR 
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Abstract. The supersymmetric method of calculation of density of stater of a spane random 
matrix is shown to be absolutely equivalent to the replica trick. A functional generalization 
of Hubbard-Stratonovich (HS) transformation was used in the course of the solution. 

Our paper is concerned with an application of a supersymmetric approach to a problem 
of calculation of the density of states of a real, symmetric N x N matrix f i  ( N  + m) 
whose elements Hv ( = H j i )  are independent, identically distributed random variables, 
with a probability distribution 

P 
N 

P ( f f g ) =  1-- 8 ( H g ) + - h ( H g )  

..\-, h ( r j  heino --... ~ o n v  -.., even "._.. didrihmtinn I.".-."" ..-.. fnnrtinn .I.. I ..-.. .."..~Y"L6"." nnn..inm.l.r in ..l I 9 = e  and 'cocpc!ivi!y' p, 
i.e. mean number of non-zero elements per row, being of order of unity. 

This problem was investigated in [13 by means of the replica trick, and an integral 
equation was obtained giving a basic possibility of finding the density of states. Authors 
of the recent paper [2] tried to use a supersymmetric method of calculation of density 
of states developed in [3]. They derived a system of integral equations that, from their 
point of view, bad no simple relations to the analogous equation obtained in [ 11, and 
only for p+m was it demonstrated that both approaches give identical results. 

We show that for the problem of calculation of density of states the supersymmetric 
approach tums out to be absolutely equivalent to the replica trick. We use a functional 
generalization of Hubbard-Stratonovich (HS) transformation, which from our point 
of view makes the derivation more transparent and general in comparison with the 
m e  :sed ir? [ I ,  71 -,. 

The density of states of a random matrix Hi, within the scope of a supersymmetric 
approach is given by the following expressions [3,4]: 

J 

JJ 
p ( E )  = (2nN)-'  Im-(Z(E, J))I,-o 

(2) 
Z(E, J ) = j ~ [ d d r l e x p [ ~ F  4T[(E~+J*)~g-Hg14j I 
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where 

Y V Fyodorov and A D Mirlin 

+i[q 4: = (Si’), sp, xy, -xi) 
XT 

is a supervector with two real commutative components Si”, Si2’ and two Grassmannian 
components xi, xf; [d+J = dSj” dSi2’ dXT dxi, 

Lo 0 0 -11 

and f is the identity matrix. The angular brackets in equation (2) denote the averaging 
over distribution ( I ) .  

Performing the averaging, we get for N -f m 

i ( z )  = h ( t )  exp(-itz) dt J 
To decouple the variables +j connected with different sites i, the authors of [1,2], 

following the method developed in [SI, expanded a function i as a power series, and 
decoupled every term by the introduction of auxiliary variables (HS transformation) 
in the usual way. The integration over the auxiliary variables could be performed for 
N + m by the steepest descent method resulting in an infinite set of coupled saddle-point 
equations. Introducing a generating function one succeeds in rewriting this set in terms 
of a single integral equation [l, 2,5]. 

Instead of the above-mentioned procedure we suggest using a functional 
generalization of HS transformation in order to decouple different sites: 

where C($,  +’) is determined by the relation . 
[ d x I ~ ( + , x ) [ ~ ( x + ’ ~ ) - ~ l = ~ ( ~ , . r l )  (5) 

6(+, .rl) being 8-function in the space of supewectors. 
It can be proved that an integral operator with the kernel K(+’,y) - 1 can be inverted 

in the space of even functions g(+) vanishing in the origin. We discuss this matter in 
more detail at the end of this section. 

Using equation (4) we transform equation (3) to the form: 
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Performing the functional integration over g for N + a, by the steepest descent method, 
we get (for I = 0) the following saddle-point equation: 

Using ( 5 )  we obtain from (7) the integral equation for the function g ( 4 ) :  
r r J  1 1  f, + , , I , .  I ^ \  , + r , 

(8) 
J LUC~IYP w , - i i  e x p { \ i / ~ w ~  ~ 9 + p g i + j )  

[d+l ex~(( i /2)++E++pg(+))  
P ( + )  = 

that coincides with equation (20) from [2], 
In view of invariance of the (8) with respect to a transformation g ( + ) - g ( f + ) ,  ? 

being an arbitrary unitary supermatrix, it is natural to search for its solution as a 
function g’ of the invariant +++ = S 2 + 2 x * x ;  S2=(S‘1’)2+(S(2))2. In that case the 
denominator in (8) turns out to be unity (a general problem of an integration of 
invariant functions over supervectors was considered in details in [4]). Since I(+’+) = 
i (S ’ )  + Zx*xf’(S*), equation (8) after the integration over Grassmannian components 
of the supervector + is equivalent to two equations: 

I(S’)=-SJomdR exp[ lER2+pi(R2)  2 ‘11 dzzh(z)J,(rRS) (9) 

%‘(S2) = -4 j omdRR exp[ iER2+pi(R2)  11 drr2h(r)Io(zRS). (10) 

The density of states is related to the function i ( s ’ )  as follows: 

2 
p ( E ) =  --Reb’(O) 

7rB 

A prime in equations (9)-(11) denotes a derivative of a function over its argument. It 
is easy to make sure that (10) is the direct consequence of (9); this supports correctness 
ofthe ansatz chosen for the function g. Equation (9) coincides with equation ( I S )  of 
[l] for a special form of the distribution function h(H;,) used therein. 

Equation (9) was obtained [l]  by the replica trick with an additional assumption 
that the solution to the problem is replica symmetric. In some way a supersymmetric 
approach could be considered as a specific variant of replica approach with half the 
replicated fields being anticommutative variables. From this point of view our assump- 
tion that g is a function of +*+ only seems to be equivalent to replica symmetric 
ansatz. Unfortunately, we are unable to prove the absence of solutions without this 
symmetry, but we believe that it is the only ‘symmetric’ solution that is relevant for 
the problem under consideration. 

The authors of [2] sought a solution of equation (8) in more general form 

g(4) = A(S2)+2x*xWS2)  (12) 

that results in three coupled equations for the functions A, B and 2, where 2 denotes 
the denominator on the right-hand side of (8). One can easily make sure that the 
condition A’= B is consistent with that system of equations and reduces it to a single 
equation equivalent to equation (9). 
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Let us discuss now the question of the existence of the quantity C, defined as the 
kernel of the operator inverse to h - 1 (see ( 5 ) ) .  Such ?n inversion could be performed 
only in the absence of zero eigenvalues of the operator h - 1. According to the definition, 
eigenfunctions f and eigenvalues A of that operator satisfy the following equation: 

(13) 

Le! os res!r;.ct oorsc!vcs !" consideratin!! of the f"!!?ctinns that v2nish I' the cdgin?. 
We look for eigenfunctions in a general form 

f(4) =f,(S"', S'2')+f*(S(1', S'Z')X*X. (14) 
Performing the integration over Grassmanian variables ,y*, x we reduce (13) to the 
system of integral equations: 

Taking into account the fact of invariance of this system with respect to 0(2)-rotations 
we should look for its solution at the form X(S) =f!"'(S') exp(im&), f = 1, 2, where 
+* is the polar angle of the vector S; m-integer number. 

Performing the integration over angular variable we get 

-i" [ d R R  [ drh(~)[J,(zRS)-S,,]f:~'(R~)=Af?fl~'(S~) 
J J 

-i" 1 d R R  dzh(z)J,(rRS)f~"'(R2))=Af!"'(S2). 

Due to the fact that h(z)= h(-r )  the left-hand sides of equations (16) vanish for odd 
m and any f $ ' ( S 2 ) ,  so A = 0. That means that we should consider the operator 6 -  1 
acting within the space of even functions f ( S )  =f(-S). 

Foreven m #Oandspecialformofdist~butIonfunctionh(r)=~[S(z-l)+S(z+l)] 
investigated in [1,2], an integral transform in the left-hand side of equation (16) is 
nothing but the well known Hankel transform and we immediately find that A = *I. 
It is easy to show that A = *I for m = 0 as well. It is possible to prove the absence of 
zero modes for more general distribution functions h ( r )  also, so it seems that an 
operator inverse to h - 1 exists in the space of even functions vanishing in the origin 
for any reasonable distribution function h(r). 

In conclusion, we have shown that the supersymmetric approach and the replica 
trick both lead to the identical form of density of states of the large sparse random 
matrix. 

However, as was shown in [6], the replica trick is inapplicable to a calculation of 
a correlation function of random matrix eigenvalues. The solution of this particular 
probiem for sparse matrices within ihe scope of a supersymmeinc appruach is con- 
sidered in a separate publication [7]. 

T Otherwise we should take into account the existence of 8-like zero mode: f ($) = 8(!b+$) .  We arc grateful 
to Professor M R Zimbauer for making us aware of this fact. 
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